TOWARDS A STANDARDIZATION OF THE DESCRIPTION AND VALIDATION OF MONTE CARLO SIMULATION CODES IN SPECT AND PET

Irène Buvat
Unité 494 INSERM, CHU Pitié-Salpêtrière, Paris, France
buvat@imed.jussieu.fr

BACKGROUND

Monte Carlo simulations are increasingly used in SPECT and PET, for optimizing imaging protocols, studying quantification issues, assessing quantification protocols and even designing correction methods.

About 10 simulation codes dedicated to SPECT and/or PET simulations are currently available. However, there is no way to readily compare their features and performance.

OBJECTIVES

1. To introduce a description profile for Monte Carlo SPECT and PET simulation codes by which code developers might specify their codes.
2. To propose validation procedures for Monte Carlo SPECT and PET simulation codes by which uniform and accurate specification of code performance could be accomplished.

METHODS

• Comprehensive review of the publications related to SPECT and PET Monte Carlo codes.
• Identification of the characteristics which differ from code to code and which should therefore be systematically specified.
• Definition of a description profile consisting of these features.
• For 7 simulation codes, attempt to fill in the description profile from published material only.

RESULTS

• The description profile consisted of 40 first-level features related to the:
 - Model accuracy (15 features) e.g., random number generator, coherent scatter modeling, references of the cross-section tables, crystal interaction modeling.
 - Code flexibility (13 features) e.g., type of source description, type of detectors (plane, ring), simulation of transmission studies, output data.
 - Code efficiency (4 features) e.g., variance reduction techniques (forced detection, stratification, weight windows), parallelization facilities.
 - Ease of use (8 features) e.g., language, supported platforms, user interface, availability, technical support, test data, documentation.

• 7 performance attributes were identified, each attribute including several sub-attributes and being given together with NEMA-like test conditions, test equipments, measurement procedures and reporting techniques.

 Performance attributes Sub-attributes
 - Spatial resolution centered in the FOV, off-centered, and with and without scatter at different positions
 - Local spectra for different configurations
 - Scatter fractions close and far from the end of the FOV
 - Detector shielding 2D / 3D
 - Sensitivity simple objects, anthropomorphic phantoms
 - Image without and with variance reduction techniques
 - Statistical properties colored flags indicate that published papers include validation data against real measurements regarding the attribute

DISCUSSION and CONCLUSION

• Simulation codes are currently not completely specified, which prevents from getting a precise picture of their potential.
• Current performance reports of simulation codes are incomplete and do not use common measurement procedures. This limits the sound use of the codes and makes it difficult to compare code performance.

Description profile and set of performance attributes are needed to uniformly characterize SPECT and PET simulation codes, hence help the potential user choose the code best suited to his specific application. We suggest definitions of description profile and performance attributes for the description and validation of simulation codes. These definitions might serve as a basis for a discussion between researchers involved in Monte Carlo simulations to agree on standardized procedures for code description and validation.

REFERENCES

ACKNOWLEDGMENTS

We are indebted to all the attendees of the workshop “Monte Carlo simulation in Nuclear Medicine” held in Paris, July 2001. We especially thank C. Morel, D. Strul and I. Castiglioni for helpful discussions.