Advanced quantification in oncology PET

Irène Buvat
IMNC – UMR 8165 CNRS – Paris 11 University
Orsay, France
buvat@imnc.in2p3.fr
http://www.guillemet.org/irene
Two steps

Radiotracer concentration (kBq/mL)

• Glucose metabolism
• Metabolically active tumor volume
• etc…
Quantification issues in oncology PET

• Tumor segmentation

• Identification of indices that best characterize the tumor in a specific context

• Interpretation of tumor changes during therapy

• Understanding the relationship between macroscopic parameters (from PET images) and microscopic tumor features
Quantification issues in oncology PET

• Tumor segmentation

• Identification of indices that best characterize the tumor in a specific context

• Interpretation of tumor changes during therapy

• Understanding the relationship between macroscopic parameters (from PET images) and microscopic tumor features
Current quantification in oncology PET

Tracer uptake (kBq/mL)

SUV (Standardized Uptake Value)

\[
SUV = \frac{\text{Tracer uptake}}{\text{Injected activity} / \text{patient weight}}
\]

SUV ~ metabolic activity of tumor cells
Comparing 2 PET scans: current approach

- Need to identify and possibly delineate the tumors
- Each tumor = 1 single SUV
- Change compared to an empirical threshold (provided in recommendations such as EORTC, PERCIST)
- Tedious when there are many tumor sites

~12 weeks
A novel parametric imaging approach

Goal: Get an objective \textit{voxel-based} comparison of 2 PET/CT scans

PET1

PET2

\sim 12 \text{ weeks}
Main steps

1. PET image registration based on the CT associated with the PET scans

2. Voxel-based subtraction of the 2 image volumes

\[PET_{1} - T_{21} \rightarrow PET_{1} - PET_{2}' \]

3. Identification of voxels in which SUV significantly changed between the 2 scans using a biparametric analysis
Step 1

VOI selection

Identification of the transformation needed to realign the 2 CT

\[T_{21} \] (rigid transform using Block Matching)

Registration of the PET volumes using the \(T_{21} \) transformation

realigned with
Step 2

Subtraction of the 2 realigned PET scans

\[T_{21}^{\text{PET2/CT2}} - \text{PET1/CT1} = T_{21}^{\text{PET2}} - \text{PET1/CT1} \]

Each point corresponds to a voxel
Step 3

Identification of the significant tumor changes in the 2D-space by solving a Gaussian mixture model

$$f(x_i | \theta) = \sum_{k=1}^{K} p_k \phi(x_i | \mu_k, \Sigma_k)$$

x_i : vector of parameters (PET1(i)-PET2(i), PET1(i))

θ : vector of parameters (p_1, ..., p_K, μ_1, ..., μ_K, Σ_1, ..., Σ_K)
Step 3: results

- **ΔV**: volume with a significant change
- **ΔSUV**: change magnitude

Parametric image

Nb of voxels

- Background
- Tumor voxels
- Physiological changes

Graph:

- X-axis: [PET1] SUV
- Y-axis: (PET1 - T2) SUV
- Z-axis: Nb of voxels

Legend:

- PET1
- T2
- ΔSUV

Note:

ISSSMA 2013 - June 3rd 2013 - 12
Example

Identification of small tumor changes (lung cancer)

PET1 T_{21}(PET2) T_{21}(PET2) - PET1 after solving the GMM PET3

PET1 T_{21}(PET2) T_{21}(PET2) - PET1 after solving the GMM PET3
Clinical validation: 28 patients with metastatic colorectal cancer

78 tumors with 2 PET/CT (baseline and 14 days after starting treatment)

<table>
<thead>
<tr>
<th></th>
<th>NPV</th>
<th>PPV</th>
<th>Sensitivity*</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>EORTC</td>
<td>91%</td>
<td>38%</td>
<td>85%</td>
<td>52%</td>
</tr>
<tr>
<td>PI</td>
<td>100%</td>
<td>43%</td>
<td>100%</td>
<td>53%</td>
</tr>
</tbody>
</table>

* for detecting lesions

- All tumors identified as progressive tumors at D14 were confirmed as such 6 to 8 weeks after based on CT (RECIST criteria)
- Among the 14 tumors identified as progressive tumors by RECIST criteria, 12 were identified as such at D14 using PI while only 2 were identified using EORTC criteria (SUVmax)

Necib et al, J Nucl Med 2011
Comparing more than 2 PET/CT scans

Longitudinal study

Problem: characterize the tumor changes
No method, each scan is usually compared only to the previous one
A parametric imaging solution

First step: PET image registration based on the associated CT

Use of the transformation identified based on the CT to register the PET scans
Model: a factor analysis model

$$\text{SUV (i, t)} = \sum_{k=1}^{K} I_k(i).f_k(t) + \varepsilon_k(t)$$

- **SUV units**
- **voxel i**
- **SUV**
- **time**

$\text{SUV (i, t)} = I_1(i) + I_2(i) + I_3(i)$

- Stable uptake over time: $f_1(t)$
- Decreasing uptake over time: $f_2(t)$
- Increasing uptake over time: $f_3(t)$
Solving the model

\[
\text{SUV} \ (i, t) = \sum_{k=1}^{K} I_k(i) . f_k(t) + \varepsilon_k(t)
\]

Priors:
- Non-negative \(I_k(i) \) coefficients
- Non-negative \(f_k(t) \) values
- In each voxel, the variance of the voxel value is roughly proportional to the mean

Iterative identification of \(I_k(i) \) et \(f_k(t) \) (Buvat et al Phys Med Biol 1998) using a Correspondence Analysis followed by an oblique rotation of the orthogonal eigenvectors
Sample results

Lung cancer patient with 5 PET/CT scans

Normalized SUV
Why is such an approach useful?

Heterogeneous tumor responses can be easily identified
Sample results: early detection of tumor recurrence (1)

Images showing tumor progression and treatment outcomes over different cycles and time periods.
Sample results: early detection of tumor recurrence (2)

EORTC: no tumor recurrence detected at PET3

PET scan

SUVmean

PI: tumor recurrence detected at PET3
Discussion / conclusion

- No need to precisely delineate the tumors
- Makes it possible to detect small changes in metabolic activity
- Summarizes changes between two or more scans in a single image
- Shows heterogeneous tumor response within a tumor or between tumors
Thanks to

Hatem Necib, PhD
Jacques Antoine Maisonobe, PhD student
Michaël Soussan, MD

Camilo Garcia, MD, Institut Jules Bordet, Bruxelles
Patrick Flamen, MD, Institut Jules Bordet, Bruxelles
Bruno Vanderlinden, MSc, Institut Jules Bordet, Bruxelles
Alain Hendlisz, MD, Institut Jules Bordet, Bruxelles