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Abstract. In SPECT, regularization is necessary to avoid divergence of the iterative algorithms
used for non-uniform attenuation compensation. In this paper, we propose a spline-based
regularization method for the minimal residual algorithm. First, the acquisition noise is filtered
using a statistical model involving spline smoothing so that the filtered projections belong to
a Sobolev space with specific continuity and derivability properties. Then, during the iterative
reconstruction procedure, the continuity of the inverse Radon transform between Sobolev spaces is
used to design a spline-regularized filtered backprojection method, by which the known regularity
properties of the projections determine those of the corresponding reconstructed slices. This ensures
that the activity distributions estimated at each iteration present regularity properties, which avoids
computational noise amplification, thus stabilizing the iterative process. Analytical and Monte
Carlo simulations are used to show that the proposed spline-regularized minimal residual algorithm
converges to a satisfactory stable solution in terms of restored activity and homogeneity, using at
most 25 iterations, whereas the non regularized version of the algorithm diverges. Choosing the
number of iterations is therefore no longer a critical issue for this reconstruction procedure.

1. Introduction

In SPECT, attenuation correction is necessary to achieve reliable quantitative measurements
from the reconstructed activity distributions. Many correction methods have been proposed
(King et al 1996) which can be divided into analytical and iterative approaches. Analytical
corrections (e.g. Belliniet al 1979, Tretiak and Metz 1980) provide an exact solution to
the inversion of the attenuated Radon transform for a uniform attenuating medium with a
convex support. However, the assumption of a uniform attenuating medium limits their
clinical applications. For non-uniform attenuating media (e.g. in cardiac imaging), there are no
analytical solutions to the inversion of the attenuated Radon transform and iterative approaches
are preferred. Iterative methods based on filtered backprojection (FBP) reconstruction (e.g.
Chang 1978) use only few iterations, typically less than five (Muraseet al1987), because their
sensitivity to noise make them diverge rapidly. Expectation-maximization (EM) and gradient
reconstruction methods can also be used for attenuation correction by modelling attenuation
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in the projector/backprojector pair. The theoretical convergence of these algorithms in the
absence of noise has been demonstrated but many iterations are needed, typically more than
50 for ML-EM algorithms. In that regard, the conjugate gradient (CG) has proven to converge
five times faster than ML-EM algorithms (Zhaoet al 1994). Ordered subsets used in iterative
algorithms can also accelerate the convergence (Hudson and Larkin 1994). However, both
gradient and EM methods remain sensitive to noise as the number of iterations increases,
thus requiring a regularization procedure (Kawata and Nalcioglu 1985, Green 1990). Iterative
methods are sensitive not only to the measurement noise affecting the acquired projections, but
also to computational noise arising from the ill-posed nature of the reconstruction procedure
as the number of iterations increases.

In this paper, we focus on the minimal residual (MR) algorithm, which is a gradient-type
algorithm using an asymmetric projector/backprojector pair (i.e. the attenuation is modelled
in the projector and not in the backprojector). Unlike the CG algorithm, the MR algorithm
does not necessarily converge to a global minimum solution (Axelsson 1980, Greenbaum
1997), yet it has been shown to give similar results to those obtained with CG for attenuation
correction in SPECT, using four times fewer iterations (Laet al 1996, La and Grangeat
1998). MR presents about the same sensitivity to noise as CG (e.g. Kawata and Nalcioglu
1985, Laet al 1996, La and Grangeat 1998) and therefore also needs to be regularized to
avoid divergence. Regularization of gradient-type algorithms (CG, MR) has already been
proposed using spatial constraints related to the reconstructed activity distributions (Kawata
and Nalcioglu 1985, Laet al 1996, La and Grangeat 1998) or probability constraints (Lalush
and Tsui 1995).

In this paper, we propose a spline-based regularization approach for the MR algorithm,
the spline-regularized minimal residual (SRMR) method. SRMR extends the regularized
backprojection method that we previously designed to address the ill-posed nature of
tomographic reconstruction (Pélégrini et al 1998) to an iterative reconstruction procedure
accounting for non-uniform attenuation. As in our previous work, we first derive a statistical
model which reduces the acquisition noise and ensures that the resulting filtered projections
belong to a known Sobolev space. A Sobolev space is a space of functions having
specific properties of continuity and derivability, which we term ‘regularity properties’. Our
novel contribution here consists in modifying the conventional MR iterative algorithm by
constraining the activity distributions estimated at each iteration to belong to another Sobolev
space, whose characteristics are deduced from those of the Sobolev space containing the
filtered projections. This approach reduces the computation noise as the number of iterations
increases, stabilizes the iterative procedure and guarantees a regularized attenuation-corrected
activity distribution.

Section 2 describes the MR algorithm. Section 3 presents the SRMR method. Sections 4
and 5 illustrate the method using analytical and Monte Carlo simulations. The value of the
method is discussed in section 6.

2. The minimal residual algorithm

In SPECT attenuation correction, the minimal residual algorithm (Axelsson 1980) is used for
solving the following inverse problem (Laet al 1996, La and Grangeat 1998):

R∗Rµf = R∗p (1)

wherep represents the acquired SPECT projections,f is the unknown activity distribution,
Rµ is an attenuated projection operator andR∗ is an operator that may be regarded as a
preconditioning operator, since it improves the condition number of the system, hence the
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Table 1. MR algorithm.

Initialization r0 = R∗p − Af 0, d0 = r0, t0 = Ad0

Stepn αn = 〈r
n, tn〉
‖tn‖2

f n+1 = f n + αndn

rn+1 = rn − αntn

βn+1 = −〈Ar
n+1, tn〉
‖tn‖2

dn+1 = rn+1 + βn+1dn

tn+1 = Arn+1 + βn+1tn

〈x, y〉 = xt y denotes the scalar product of vectorsx andy.

convergence rate of the algorithm. The algorithm is called ‘minimal residual’ because it
reduces the squared residual error‖R∗Rµf −R∗p‖2 at each iteration.R∗ should be chosen as
close toR−1

µ as possible so thatA = R∗Rµ is close to the identity matrix, which ensures that
the MR algorithm converges monotonically to a minimum (Axelsson 1980, Greenbaum 1997,
La and Grangeat 1998). An example of operatorR∗ is the filtered backprojection operator
(Walterset al 1981, Laet al 1996, La and Grangeat 1998). WhenA is a symmetric positive
definite matrix, MR converges to a unique solution and the inverse problem is solved using
conventional conjugate gradient algorithms. MR can therefore be viewed as a generalization
of CG algorithms to asymmetricA operators.

If f 0 is the initial activity distribution estimate, the MR algorithm is given in table 1.f n+1

is the activity distribution estimate at stepn > 0, αn is the step size in the search direction
dn andrn = R∗p − Af n is the residual vector.βn andtn = Adn are additional convenient
parameters of the MR algorithm.

3. The spline-regularized minimal residual algorithm (SRMR)

Our approach takes advantage of the fact that the projectionsand the corresponding activity
distributions are intrinsically continuous. We model this continuity by assuming that
projectionsand activity distributions belong to spaces of functions having specific properties
of derivability and continuity. More specifically, we consider Sobolev spaces of orderα ∈ R
(Adams 1975), denoted byH(α) (see appendix A for a definition). Form an integer,H(m) is
simply the space of functions having absolutely continuous derivatives up to orderm− 1, and
such that the square of theirmth derivative has a finite integral. For convenience sake, we term
‘regularity properties’ the properties of continuity and derivability of functions belonging to a
given Sobolev space.

To deal with the properties of Sobolev spaces, SRMR includes two steps (figure 1):
regularization of the projections by noise filtering and regularization of the iterative
reconstruction procedure. The measurement noise in the projections is first reduced so that the
resulting filtered projections belong to a specific Sobolev space (section 3.1). Then, the operator
R∗ used for the iterative reconstruction is chosen so that it constrains the estimated activity
distribution to also belong to a specific Sobolev space which is consistent with the Sobolev
space the filtered projections belong to (section 3.2). The activity distributions estimated at
each iteration therefore present specific regularity properties, which ensures the regularization
of the iterative process.
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Figure 1. Spline-regularized minimal residual (SRMR) algorithm: summary of the processing
steps.

3.1. Noise filtering

The statistical model presented in Pélégrini et al (1998) to filter the acquisition noise in the
sinograms has been generalized so that all sinograms are filtered simultaneously instead of
processing each slice independently. Using this model, reduced-noise projections belonging
to a specific Sobolev space are estimated.

3.1.1. Statistical model for noise filtering.Let p denote the acquired discrete projections,
consisting ofN projection angles,K projection bins andS slices. TheK-vectorpij represents
the variation of the signal along the direction of the bins within the slicej (j = 1, S) of the
projectioni (i = 1, N ).

Let us assume that one can define a continuous transformT so that the process underlying
the transformed projectionsp′ = T (p) presents a variance which is stationary in space (i.e.
which does not depend on the projection bink).

If there were no noise, the acquired projectionsp′ijk (k = 1,K) should be the discretization
of projectionsp′ which arecontinuousalong the direction of the projections bins because of
the finite spatial response function of the acquisition device. This intrinsic regularity of the
continuous projectionsp′ can be modelled by assuming thatp′ belongs to a Sobolev space
H(m). For convenience sake, instead of writing thatp′ijk (k = 1,K) are the discrete version
of continuous functionsp′ ∈ H(m), we will write that the discrete functionsp′ijk (k = 1,K)
belong toH(m).

To model the noise affecting the projections, an additive statistical model, namely the
fixed-effect model (Caussinus 1986), is used. This model assumes that:

(a) TheK-vectorsp′ij are defined on a probability space and can be written

p′ij = p̂ij + εij
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wherep̂ij is the non-random part (or fixed part) ofp′ij andεij is a random error which does
not depend on̂pij . In this model,p̂ represents the reduced-noise or filtered projections
one wishes to estimate.

(b) The variance ofp′ij can be written

Var[p′ij ] =
1

S ×N 0
where0 is a(K,K) symmetric positive definite matrix.

(c) There is aQ-dimensional subspaceH(m)
Q of H(m) (Q < K) such that allp̂ij belong to

H
(m)
Q .

The model therefore assumes that the filtered projections belong to a subspace of the projection
space which the acquired projections belong to.

3.1.2. Estimating the filtered projections.To estimate the filtered projections using the
statistical model, the transformT and the subspaceH(m)

Q must be determined. The filtered

data are then obtained by projecting the transformed projections onto the subspaceH
(m)
Q .

The transformT depends on the noise distribution of the acquired data. In SPECT, noise
is Poisson distributed. The nonlinear transformT (p) = √p + 3/8 changes a Poisson variable
into an asymptotic Gaussian variable with the following asymptotic variance (Rao 1962):

0 = 1

4
Id

where Id is the (K,K) identity matrix, thus ensuring that Var[p′ij ] does not depend on the
projection angle.

H
(m)
Q is estimated by minimizing the expression

I = E
[ S∑
j=1

∑
i∈Ij
‖pγij − p̂ij‖20−1

]
(2)

whereE[.] denotes the expectation,pγij ∈ H(m)
Q is the smoothed version ofp′ij andIj is the

set of projectionsi for the slicej (i.e. the sinogram corresponding to slicej ). pγij is obtained
by solving a minimization problem to approximate each projection along the directionk by a
smoothing spline function of degree 2m− 1 (appendix B). The trade-off between the fidelity
to the datap′ij and the smoothness of the functionpγij is controlled by the smoothing parameter
γ > 0. A single parameterγ is used for all slices.

The criterionI (equation (2)) is a generalization of the criterion proposed by (Besse
1988) and previously used for filtering a single sinogram in Pélégrini et al (1998). When
filtering the projections of a volumetric distribution of activity, the criterionI takes into account
simultaneously the sinograms corresponding to all slices.

The solution of the minimization problem given by equation (2) is obtained
using a Principal Component Analysis of smoothing spline functions involving the
eigendecomposition of the matrixW0−1, whereW = 1

S×N P
γ tP γ is the covariance matrix of

thepγijk.
t denotes the transpose,P γ is the (S ×N ,K) matrix whose elements arepγijk − pγjk,

andpγjk is a local centre of gravity corresponding to the mean calculated over all the projection
anglesi, for each bink and each slicej .

This eigendecomposition corresponds to an eigendecomposition of the within-group
variance (i.e. the variance which is not due to differences between the means of the sinograms
(Benali and Escofier 1989)), where the data are discretized spline functions. The subspace
H
(m)
Q is spanned by the firstQ eigenvectors associated with the largestQ eigenvalues of the
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Table 2. Noise filtering algorithm.

Nonlinear transform p′ = T (p) H⇒ 0 = 1
4 Id

Determination ofH(m)
Q Spline smoothing:p′ H⇒ pγ

Eigendecomposition ofW0−1

Projection ofpγ onto the subspaceH(m)
Q H⇒ p̂γ

Inverse nonlinear transform p̃ = T −1(p̂γ )

matrixW0−1. The filtered projections̃pij are obtained by projectingpγij ontoH(m)
Q and by

performing the inverse transformT −1. The noise filtering algorithm is summarized in table 2.

3.2. Regularization of the estimation steps

3.2.1. Regularity properties of the first residualr0. Using the filtered projections̃p, the first
residualr0 can be calculated, using an FBP-type algorithm, the spline-filtered backprojection
(SFBP) (Gúedon and Bizais 1994, Pélégriniet al 1998).

As described in Ṕelégrini et al (1998) and appendix C, SFBP includes a ramp filter
regularized by the Radon transform of spline kernels of degree 2m − 2, i.e. spline kernels
belonging toH(m− 1

2 ). This operator satisfies the ‘space correspondence theorem’ (Louis
1980, Natterer 1986), according to which the inverse Radon transform is continuous between
Sobolev spaces. Indeed, this theorem states that ifp̃ is the discretization of projections ofH(m)

(modelled using spline functions of order 2m− 1), thenr0 is the discretization of an activity
distribution belonging to the Sobolev spaceH(m− 1

2 ) (Louis 1980); reciprocally, the projections
of an activity distribution which is the discretization of a function belonging toH(m− 1

2 ) can
be interpreted as the discretization of continuous projections belonging toH(m) (Louis 1980,
Natterer 1986).

SFBP reconstruction is 2D: each slice is reconstructed independently. To ensure shift-
invariance of the reconstruction process, fine projection sampling compared to the image pixel
size is required (Gúedon and Bizais 1994). We oversample the projectionsp̃ by a factor1 = 4.
This oversampling, performed using interpolating spline functions of order 2m − 1, ensures
that the oversampled projections still belong toH(m). In the following,RSFBP denotes the
reconstruction process which includes:

(a) Oversampling of the projections using interpolating spline functions of order 2m− 1.

(b) Reconstructing an activity distribution belonging toH(m− 1
2 ) in the original spatial sampling

(i.e. no oversampling of the reconstructed activity distribution).

By choosingf 0 = 0 (which is a particular function ofH(m− 1
2 )), the first residualr0 is the

activity distribution reconstructed from the filtered projectionsp̃ using SFBP. Incidentally,r0

is the activity distribution reconstructed from theacquiredprojections using the regularized
backprojection (RBP) described in Pélégriniet al (1998). The residualr0 = RSFBPp̃ = RBPp
and the first directiond0 = r0 (see table 1) belong toH(m− 1

2 ). Consequently, from table 1, the
operatorR∗ for this initialization step is RBP.

3.2.2. Regularity properties of the operatorA. To ensure that the activity distributions
estimated during the iterative process belong toH(m− 1

2 ), as doesr0, it is necessary to define an
operatorA = R∗Rµ which ensures that the projection/backprojection of an activity distribution
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belonging toH(m− 1
2 ) also belongs toH(m− 1

2 ). The attenuation distribution required to define
Rµ is assumed to be known (for instance from a transmission acquisition (Kinget al 1995)).

Let g be an activity distribution belonging toH(m− 1
2 ). As Rµ is a continuous operator,

the attenuated projections ofg are regular and belong toH(m) (from the space correspondence
theorem). We have shown in section 3.2.1 thatRSFBP ensures that the reconstruction of
projections belonging toH(m) belongs toH(m− 1

2 ). ChoosingRSFBP asR∗, the oversampling
process ensures that the attenuated projectionsRµg belong toH(m) and that the reconstructed
activity distributionRSFBPRµg belongs toH(m− 1

2 ). Therefore, the operatorA defined as
RSFBPRµ verifies:

for anyg ∈ H(m− 1
2 ) ⇒ Ag ∈ H(m− 1

2 ). (3)

As a consequence, sinced0 = r0 belongs toH(m− 1
2 ) (section 3.2.1), the reconstructed

distributiont0 belongs toH(m− 1
2 ).

3.2.3. Regularity properties of the estimated activity distributionsf n. We showed in
sections 3.2.1 and 3.2.2 thatf 0, r0, d0 andt0 belong toH(m− 1

2 ). We now show by induction
onn that the estimated activity distributionsf n also belong toH(m− 1

2 ).
Suppose thatf n, rn, dn and tn belong toH(m− 1

2 ). The proof consists in verifying that
f n+1, rn+1, dn+1 andtn+1 belong toH(m− 1

2 ).

• Table 1 states thatf n+1 = f n + αndn with αn real; asf n anddn belong toH(m− 1
2 ), f n+1

also belongs toH(m− 1
2 ), under the properties of Hilbert spaces discussed in appendix A.

• Table 1 states thatrn+1 = rn − αntn. As rn andtn belong toH(m− 1
2 ), we can deduce as

above thatrn+1 ∈ H(m− 1
2 ).

• Table 1 states thatdn+1 = rn+1 + βn+1dn. βn+1 is real,dn belongs toH(m− 1
2 ) and we have

just proven thatrn+1 belongs toH(m− 1
2 ); consequently,dn+1 ∈ H(m− 1

2 ).
• Table 1 states thattn+1 = Arn+1 +βn+1tn. βn+1 is real andtn belongs toH(m− 1

2 ). We know
from (3) thatArn+1 belongs toH(m− 1

2 ). Thereforetn+1 ∈ H(m− 1
2 ).

This completes the proof. The final SRMR algorithm is thus the same as that given by table 1,
withR∗ = RBP at the initialization step,f 0 = 0 andA = RSFBPRµ. The space correspondence
theorem ensures that all calculated activity distributionsf n belong to the same spaceH(m− 1

2 ).
In summary, four parameters are involved in the SRMR algorithm: the projection Sobolev

space orderm, the smoothing parameterγ , the dimensionQ of the Sobolev subspaceH(m)
Q

and the number of iterationsn.

4. Materials and methods

4.1. Data simulation

4.1.1. Quantification phantom. An elliptical phantom (figure 2(a)) with homogeneous
regions of various intensities (table 3) was generated using the RECLBL library (Huesman
et al 1977). The regions were large enough to avoid partial volume effects when performing
quantitative measurements in the ROIs. The corresponding attenuation map is shown in
figure 2(b). The linear attenuation coefficients corresponded to physiological values for a
99mTc acquisition (table 3). Four identical slices (one pixel thick) were generated to simulate
3D distributions. For each slice, 128 equally spaced 1D projections along a circular 360◦

orbit were calculated for a parallel geometry, with 128 bins per projection, using an attenuated
projector of the RECLBL library. The projector did not model scatter, but was modified to
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Figure 2. Quantification phantom. (a) Simulated activity distribution for each slice.
(b) Corresponding attenuation map. (c) Regions of interest used for absolute quantification.

Table 3. Horizontal and vertical half-axis (Lx,Ly ) (in mm), simulated activitȳx (in number of
events per voxel) and linear attenuation coefficientsµ (in cm−1, values at 140 keV) in the regions
shown in figure 2(a) and figure 2(b).

Activity (figure 2(a)) Attenuation (figure 2(b))

Region (Lx,Ly ) x̄ (Lx,Ly ) µ

1 (248,195) 614 (248,195) 0.15 (soft tissue)
2† (41,124) 0 — —
3 (41,124) 1228 (56,139) 0.04 (lungs)
4 (41,124) 2456 (56,139) 0.25 (bone)

† Activity regions 1 and 2 are in the same attenuating medium.

account for a depth-dependent detector response function corresponding to that of an LEHR
collimator (Formiconiet al 1989). The detector response was assumed to be a symmetric 1D
Gaussian function with a standard deviation varying linearly with the source depth. The pixel
size was 4.14 mm. Poisson noise was added to the calculated projections. The mean pixel
count in each resulting sinogram was approximately 90.

4.1.2. Monte Carlo cardiac simulation. An anthropomorphic Data Spectrum cardiac
phantom consisting of a left ventricle (LV) (10 mm thick wall), two lungs, a spine and a
liver was considered; a99mTc activity of 0.078 MBq ml−1 (respectively 0.047 MBq ml−1) was
simulated in the LV wall (respectively in the liver). The long and short axes of the elliptical
container simulating the torso were 32 and 24 cm long respectively. Narrow-beam attenuation
coefficients corresponding to different compartments (soft tissue, lungs, spine and LV) and
computed for any energy between 50 and 200 keV were considered.

A Monte Carlo simulation using SimSET (Harrison 1993) was performed. An LEHR
collimator was modelled. Two sets of 128 2D projections each were simulated over 360◦ for a
parallel geometry, with 128 bins and 44 slices per projection (radius of rotation of the detector
20 cm, pixel size 3.8 mm, slice thickness 5 mm). The first set contained only primary photons,
i.e. attenuation was taken into account but scattered photons were discarded; the mean number
of counts in the LV for a lateral projection was approximately 10. The second set consisted
of ‘interaction-free’ projections (i.e. no attenuating medium was considered) and was used as
a reference; the mean number of counts in the LV for a lateral projection was approximately
120. The two sets differed only in the modelling of attenuation.
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4.2. Data analysis

4.2.1. Image reconstruction.All the projections of either the quantification phantom or the
cardiac phantom were processed simultaneously. The depth-dependent variations of the point
spread function of the detector were not compensated for.

When using MR for reconstruction, the operatorR∗ was FBP as in Wallis and Miller
(1993). A Hann filter (cut-off frequency 0.5 pixel−1) was used to reduce the effect of noise
when computing the first residualr0 (initialization step), as in Laet al (1996) and La and
Grangeat (1998). For estimation stepsn, only a ramp filter (cut-off frequency 0.5 pixel−1) was
used.

When using SRMR for reconstruction, the parameters given in table 4 were considered.
Cubic spline functions were used to model the regularity of the projections (i.e.m = 2).
To be consistent with the space correspondence theorem, the ramp filter used in SFBP was
regularized using the Radon transform of quadratic spline kernels (appendix C). One hundred
iterations were performed to study the stability of the MR and the SRMR algorithms.

The interaction-free projections of the cardiac phantom were reconstructed using FBP
with a ramp filter (cut-off frequency 0.5 pixel−1).

Table 4. R∗ operators for the SRMR algorithm.

Quantification phantom Cardiac phantom

Initialization RBP (γ = 10−4,Q = 40) RBP (γ = 0.005,Q = 30)
Stepn RSFBP RSFBP

4.2.2. Analysis of the reconstructed data.In the quantification phantom, the average number
of counts per pixel (̄x) and the corresponding standard deviation (σ ) were calculated in the four
rectangular ROIs (7×34 pixels each) with intrinsic uniform count density shown in figure 2(c).

In the cardiac phantom, three-dimensional ROIs were drawn in the LV wall (3093 pixel
ROI) and in the liver (11692 pixel ROI). The average number of counts per pixel (x̄) and
the corresponding standard deviation (σ ) were calculated in each ROI for the 3D activity
distributions obtained (a) when reconstructing the interaction-free projections using FBP and
(b) when reconstructing the attenuated projections using MR and SRMR.

5. Results

5.1. Quantification phantom

Only results regarding the first slice are presented. Similar results were obtained with the other
slices.

Figures 3 and 4 show̄x and |σ/x̄| respectively as a function of the iteration numbern.
Figure 3 demonstrates that, from iteration 25, the mean activity remained unchanged in all
regions when using SRMR, while it kept increasing in ROI 2 (cold soft-tissue region) when
using MR. When the mean values were stable in the hot regions, i.e. after at most 25 iterations,
the relative errors between the measured and the theoretical activities were less than 5%.
Figure 4 shows that|σ/x̄| also remained stable after about 25 iterations, which demonstrates
the stabilization in variance of the iterative algorithm. On the other hand,|σ/x̄| diverged
dramatically in all ROIs (typically after 35 iterations) with MR: betweenn = 35 andn = 100,
|σ/x̄| increased by 15% in ROIs 3 and 4, and by more than 120% in ROIs 1 and 2.
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Figure 3. Quantification phantom. Plot of̄x value measured in each ROI as a function of the
iteration number: – – –, simulated value;· · · · · ·, MR algorithm; ——, SRMR algorithm.
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Figure 4. Quantification phantom. Plot of|σ/x̄| value measured in each ROI as a function of the
iteration number:· · · · · ·, MR algorithm ——, SRMR algorithm.

Figure 5 shows a reconstructed slice obtained with MR and SRMR forn = 0, n = 30
andn = 80, compared with the simulated slice. From table 1, the reconstructed slicesf 1

obtained using MR (respectively SRMR) andn = 0 are proportional to the first residualr0

obtained using FBP (respectively RBP) at the initialization step. With MR, a high-frequency
noise pattern made the images obtained at iterationsn = 30 andn = 80 different. On the
other hand, the slices obtained using SRMR forn = 30 andn = 80 appeared identical.
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SRMR

MR

0 30 80

Figure 5. Quantification phantom. Top row: simulated slice. Middle row: reconstructed slice
obtained with the MR algorithm. From left to right:n = 0, n = 30, n = 80. Bottom row:
reconstructed slice obtained with the SRMR algorithm. From left to right:n = 0,n = 30,n = 80.
The images are displayed with the same minimum and maximum values.

5.2. Cardiac phantom

Figure 6 shows̄x and|σ/x̄|measured in the LV wall and in the liver respectively as a function
of the iteration numbern. A satisfactory convergence of the mean activity was observed with
both MR and SRMR. When convergence was reached, i.e. after at most 25 iterations, the
relative error between the activity measured with MR or SRMR and the activity measured in
the reconstructions of the interaction-free projections was less than 1%. In the LV wall, which
was affected by partial volume effect and depth-dependent blurring, the simulated activity was
underestimated by about 35% with all reconstruction methods. The simulated activity in the
liver (which was almost not affected by partial volume effect) was underestimated by 4% on
average.

Figure 6 also demonstrates that|σ/x̄| was stable when using SRMR, after at most 25
iterations, but diverged in both the LV and the liver when using MR, after 40 iterations:
betweenn = 40 andn = 100,|σ/x̄| increased by 7% in the LV and by more than 20% in the
liver.



2634 M Pélégrini et al
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Figure 6. Cardiac phantom. Plot of̄x and|σ/x̄| values measured in the LV wall and in the liver
as a function of the iteration number: – – –, reconstruction of interaction-free projections;· · · · · ·,
MR algorithm; ——, SRMR algorithm.

Figure 7 shows a transverse LV slice obtained with MR and SRMR forn = 0, n = 30
andn = 80, compared with the simulated slice. The reconstructed slices obtained using MR
(respectively SRMR) andn = 0 are proportional to that obtained using FBP (respectively
RBP) at the initialization step. Again, the slices obtained using SRMR forn = 30 andn = 80
were visually identical.

6. Discussion

6.1. Regularization of the MR algorithm

Iterative algorithms are the techniques of choice for non-uniform attenuation correction in
SPECT, but need to be regularized to avoid divergence. The regularization approach we
propose deals with both the acquisition noise and the ill-posed nature of the inversion of the
Radon transform.

6.1.1. Noise filtering. The proposed method first filters the acquisition noise using the
fixed-effect model, which describes the projections as a linear combination of a reduced-noise
component and an error. The only assumptions are that the first and second-order moments of
this error are known and that its covariance does not depend on the projections. The fixed-effect
model can be used provided the covariance matrix0 is known. This is achieved by performing a
transformT on the projections. For example,T = Id (identity matrix) for Gaussian distributed
data (thus0 = Id (Anderson 1984, Benaliet al 1994)) andT (p) = √p + 3/8 for Poisson
distributed data (thus0 = 1

4Id (Caussinus 1986)). The filtering method can therefore be
used either for original SPECT projections where noise is Poisson distributed, or for any
preprocessed set of projections in which noise would be Gaussian.
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SRMR

MR

0 30 80

Figure 7. Cardiac phantom. Top row: simulated activated distribution for a transverse slice.
Middle row: reconstructed slice obtained with the MR algorithm. From left to right:n = 0,
n = 30,n = 80. Bottom row: reconstructed slice obtained with the SRMR algorithm. From left
to right: n = 0,n = 30,n = 80. The images are displayed with the same minimum and maximum
values.

In the absence of noise, the projections should be regular along the direction of the binsk

and along the direction of the slicesj . Only the regularity along the direction of the binsk
is currently modelled and modelling regularity along the direction of the slices still needs to
be incorporated. Moreover, the projectionsi are not physically independent in that sense that
each projection is just a different view of the attenuated activity distribution. Future work
on the fixed-effect model should take these additional properties of SPECT projections into
account.

6.1.2. Regularization of the estimation steps.The regularization of the iterative procedure is
performed by choosing an appropriate operatorR∗ for the MR algorithm.

The basic idea for using aR∗ operator is to accelerate convergence by improving the
numerical conditioning of the equations without altering the solution (Golub and Van Loan
1984), which corresponds to preconditioning. Several preconditioning operators have been
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proposed for the conjugate gradient algorithm and applied in PET (Chinn and Huang 1997)
and SPECT reconstruction (Lalush and Tsui 1994, 1995). In addition to preconditioning,
regularization is also required at each iteration to avoid noise amplification. An original
feature of our approach is that, in the iterative procedure, a single operator is used for both
preconditioning and regularizing. The role of this operator is not only to accelerate convergence
compared to the conventional conjugate gradient algorithm, but more importantly to avoid the
algorithm divergence, by ensuring that all reconstructed activity distributions belong to a
specific Sobolev space.

It has been shown that the operators used in the iterative filtered backprojections (Walters
et al1981) are good candidates for theR∗ operator when using the minimal residual algorithm
(La et al 1996, La and Grangeat 1998), but they do not ensure regularization. A spatially
adaptative filtering technique has already been proposed for the regularization of MR (La
et al 1996, La and Grangeat 1998) and applied to brain (Almeidaet al 1997) and cardiac
(La and Grangeat 1998) SPECT reconstruction: each estimated activity reconstruction is
convolved with a 3D Laplacian kernel and then multiplied by a regularization parameterλ,
which differs from one region to another, thus requiring a preliminary segmentation of the
images.

TheR∗ operator used for the initialization step of the SRMR algorithm is the regularized
backprojection. It ensures that the acquisition noise is filtered, and in that respect the proposed
noise filtering procedure is analogous to the apodized ramp filter when FBP is used for
initialization (as in MR, where a Hann filter is used for the first reconstruction). Another
approach (Fessler 1993) involved a similar spline smoothing procedure along thek direction
(with variableγ to deal with artefacts in the data) but the data were reconstructed using
conventional FBP (with a ramp filter), which did not address the ill-posed nature of the
reconstruction problem. In our approach, RBP ensures that the reconstruction problem is
well-posed (from the space correspondence theorem) and that the first reconstructed activity
distribution (i.e. the first residual) belongs to the Sobolev spaceH(m− 1

2 ), providedf 0 is an
activity distribution belonging toH(m− 1

2 ). Constraining functions (here projectionsandactivity
distributions) to belong to a Sobolev space is equivalent to regularizing these functions by
solving an optimization problem involving constraints pertaining to the derivatives of the
functions (e.g. appendix B, equation (B.1)). TheR∗ operator used in the further estimation
steps is SFBP. This ensures that all estimated distributions belong toH(m− 1

2 ).
While the initialization step uses the statistical properties of the noise affecting the

projections, only continuity and derivability properties are taken advantage of in the estimation
steps. It should be emphasized that, unlike in the ML-EM approaches, only the statistical
properties of theacquireddata are taken into account.

6.1.3. Parameters involved in the SRMR algorithm.SRMR involves four parameters. The
order of the projection Sobolev space wasm = 2 as in our previous work (Ṕelégrini et al
1998), since cubic smoothing splines are easily calculated. Our results show that the choice
of the number of iterations is not a major problem since stability was reached after at most 25
iterations for the types of data we considered.

Two parameters therefore remain to be determined: (a) the smoothing parameterγ used
when fitting the projections using spline functions and (b) the dimensionQ of the Sobolev
subspace containing the filtered projections. Determining the appropriate combination of
[γ,Q] for removing noise without losing any relevant information is a challenge similar to
determining a filter cut-off frequency and/or order. These parameters are currently chosen
experimentally based upon the conclusions of our previous work (Pélégriniet al 1998).
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Experimental results on the quantification phantom (not shown) suggest that the
appropriate [γ,Q] combination only depends on the signal-to-noise ratio in the acquired
projections and does not depend on the nature of the attenuating medium. For instance,
the same combination [γ = 10−4, Q = 40] gave satisfactory results in air and in the case of
a uniform or non-uniform attenuating medium, provided the mean number of counts in the
projections was approximately 100.

6.2. Results

The SRMR approach was first validated using analytically simulated projections of a
quantification phantom. These were not realistic two-dimensional projections since the
attenuated sinograms were calculated independently for each slice and then stacked up. The
rationale was only to study the convergence properties of SRMR.

The quantification phantom included various ‘activity/attenuation’ combinations and
showed that MR diverged in terms of restored mean activity for one of these combinations
(ROI 2), whereas SRMR gave stable results in all regions. We did not investigate in detail in
this paper whether the divergence of MR was due to the activity distribution or to the density
distribution, or to a combination of both. However, for a uniform soft-tissue medium with
the same activity distribution (results not shown), the same divergence of MR was observed
while SRMR gave stable results after 25 iterations at most for all regions. When using MR,
the regional signal variance also kept increasing with the number of iterations, while it became
stable after 25 iterations at most with SRMR.

We also studied SRMR using Monte Carlo simulations. We processed only primary
projections to avoid the problem of scatter, which was beyond the scope of this work.
Although the phenomena we considered (noise, attenuation and depth-dependent blurring)
could be analytically simulated, Monte Carlo simulation remained more precise than analytical
simulations to account for the variation of the narrow-beam attenuation coefficients with energy.

Using the Monte Carlo data, we compared the activity distributions obtained with MR or
SRMR to the FBP reconstructions of interaction-free projections of the same phantom. The
latter represented the ‘best’ result that could be achieved when compensating for attenuation,
all other simulation parameters being identical. The resulting underestimation of the actual
simulated activity, especially in the LV wall, showed the need of depth-dependent blurring and
partial volume effect corrections for accurate quantitation.

Our results demonstrated that MR gave stable results in terms of restored activity but
dramatically diverged in variance, making it difficult to choose an appropriate number of
iterations. On the other hand, SRMR gave stable results in both mean and variance, after
at most 25 iterations. As stable results were observed after at most 25 iterations for both
phantoms, the convergence rate might be independent of the ‘activity/attenuation’ distribution.
Although SRMR does not theoretically converge necessarily to a global minimum, constraining
the reconstructed activity distributions to belong to a Sobolev space ensures the practical
convergence of the mean and the variance in homogeneous regions.

All presented results regard data obtained for a 360◦ orbit. For the cardiac simulation,
using a 360◦ orbit instead of a 180◦ orbit reduced the geometrical distortions due to the depth-
dependent blurring, which was not compensated for in this paper. However, reconstruction of
180◦ cardiac data using SRMR has already been investigated (Pélégrini 1997) and satisfactory
results have been obtained.

Implementation of SRMR has not been optimized yet, leading to a computation time four
times higher than with MR (10 min per iteration for the cardiac phantom on a Silicon Graphics
O2 workstation). This is mainly due to the projection oversampling and to the 2D SFBP
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reconstruction used in SRMR. Future work will address the optimization of spline calculations
(e.g. using methods described in Unseret al (1993)) and the use of a fully 3D reconstruction
algorithm to complete the filtering procedure proposed in this paper.

7. Conclusion

To address the problem of measurement noise and computational noise, which contributes
to the ill-posed nature of the reconstruction problem in the presence of attenuation, we
proposed a new spline-based regularization method for the minimal residual algorithm,
called SRMR. SRMR uses the space correspondence theorem which states that the inverse
Radon transform is continuous between Sobolev spaces, i.e. that the reconstructed activity
distributions have specific continuity and derivability properties which can be deduced from
those of their projections. We first take advantage of the intrinsic regularity properties of the
acquired projections in solving a statistical model which reduces the Poisson measurement
noise and ensures that the resulting filtered projections belong to a known Sobolev space.
We then reduce computational noise during the iterative reconstruction procedure used
to correct for attenuation, by using a regularized backprojection method, the SFBP. This
ensures that the activity distributions estimated at each iteration belong to the Sobolev space
consistent with the Sobolev space the projections belong to (from the space correspondence
theorem).

Analytical and Monte Carlo simulations demonstrate that such a regularization gives stable
results after at most 25 iterations. Further studies will include detailed comparison with other
existing attenuation correction schemes, such as ML-EM approaches, and combination of the
proposed processing approach with scatter correction and compensation for depth-dependent
blurring and partial volume effects.
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Appendix A. Sobolev spaces

This section introduces the general definition of Sobolev spaces. For more details, we refer
the reader to Adams (1975) and Natterer (1986).

Let S(Rn) denote the Schwartz space: the linear space of those infinitely differentiable
functionsf (x) with compact support inRn, which fall to 0 faster than any power of 1/x as
|x| tends to infinity (and so do all their derivatives). LetS ′(Rn) denote the space of tempered
distributions, i.e. the space of linear functionalsF defined overS(Rn). The general definition
of a Sobolev space ofreal orderα,H(α), is (Adams 1975, Natterer 1986, Triebel 1992):

H(α) = {F ∈ S ′(Rn) : (1 + |ξ |2)α/2F̂ ∈ L2(Rn)}
whereξ ∈ R, F̂ denotes the Fourier transform ofF andL2(Rn) denotes the space of functions
onRn the square of which has a finite integral.

FunctionsF are said to be ‘α times differentiable in the sense of Sobolev’. The smoothness
or ‘Sobolev regularity’ ofF can be measured by the number of timesF is differentiable (Triebel
1992).
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The following results hold:

(a) H(α) is a Hilbert space (Natterer 1986) with norm

‖F‖H(α) =
(∫

Rn
(1 + |ξ |2)α|F̂(ξ)|2 dξ

)1
2

.

Consequently, (1) for allF ∈ H(α) anda ∈ R, aF ∈ H(α) and (2) for allF1 ∈ H(α) and
F2 ∈ H(α), F1 +F2 ∈ H(α).

(b) Form > 0 an integer,H(m) consists of those functions whose derivatives of order up to
m− 1 are absolutely continuous and whosemth derivative is inL2(Rn) (Wahba 1990).

(c) If α > m + 1
2, m an integer, one can verify thatF ism times continuously differentiable

(Triebel 1992).

Appendix B. Spline functions as solutions for smoothing problems

The so-called ‘smoothing problem’ consists in finding a functionhγ which is a smoothed
approximation of a functionf , assuming thathγ has known properties of continuity and
derivability. As a particular case, it may be assumed thathγ has an absolutely continuous
(m−1)th derivative and a square integrablemth derivative (Schoenberg 1964), i.e.hγ belongs
to the Sobolev spaceH(m),m an integer (appendix A).hγ is obtained by solving the following
minimization problem:

hγ = min
h∈H(m)

‖h− f ‖2
H(m) + γ ‖h(m)‖2 (B.1)

where‖.‖H(m) is the norm defined onH(m) (appendix A),γ is called the smoothing parameter
andh(m) is themth derivative ofh. γ controls the trade-off between the fidelity to the dataf

and the smoothness of the solution (Wahba 1990, Fessler 1993).
It has been shown (Schoenberg 1964) thathγ is a spline function of order 2m−1 sampled

at knotsk(k = 1,K), i.e.hγ is piecewise polynomial of degree 2m−1 in each interval [k, k+1],
with the pieces joined at the knotsk so thathγ has 2m− 2 continuous derivatives. The space
of spline functions of order 2m− 1 is thus a compact subspace ofH(m).

Appendix C. Space correspondence theorem and discrete reconstruction schemes

This section briefly describes how a discrete reconstruction problem may be solved using the
theory of Sobolev spaces. This requires (1) interpreting discrete activity distributions as the
discretization of functions belonging to a Sobolev space and (2) designing a reconstruction
algorithm which satisfies the space correspondence theorem. For more details, we refer the
reader to Ohyamaet al (1987) and Gúedon and Bizais (1991, 1994).

Appendix C.1. Discrete activity distributions

Discretizing a functionf(x, y) (e.g. a 2D distribution of activity) on a grid with pixel sized
consists in applying a prefilterg(x, y) (e.g. an anti-aliasing filter such as the ideal low-pass
filter of the Shannon sampling theorem) tof(x, y) and sampling thereafter, i.e. taking the values
of the prefiltered function at pointsl = xd, l′ = yd:

fll′ = g(x, y) ∗ ∗f(x, y)|x=l/d,y=l′/d (C.1)

where∗∗ denotes a 2D convolution operator. The space the activity distribution belongs to is
entirely determined by the nature of the prefilterg. If g ∈ H(α)(R2), g ∗ ∗f ∈ H(α)(R2).fll′ is
thus the discretization of a continuous function ofH(α)(R2).



2640 M Pélégrini et al

Appendix C.2. Spline-filtered backprojection (SFBP)

The conventional FBP reconstruction of a continuous activity distributionf(x, y) from its
continuous projectionsp(r, θ) can be written as:

f(x, y) = B{h(r) ∗ p(r, θ)} (C.2)

whereB denotes the backprojection operator,∗ denotes 1D convolution along the radial
directionr andh(r) denotes the inverse Fourier transform of the ramp filter.

Using equation (C.2) and the central slice theorem, it can be shown that the 2D convolution
of g and f (equation (C.1)) is the reconstruction of the 1D convolution of their continuous
projectionspg(r, θ) andp(r, θ), hence:

g(x, y) ∗ ∗f(x, y) = B{h(r) ∗ pg(r, θ) ∗ p(r, θ)} = B{b(r, θ) ∗ p(r, θ)}.
b(r, θ) can be interpreted as an angle-dependent spline-regularized ramp filter.

SFBP consists in choosing the Radon transform of a 2D spline kernelg (i.e. a B-spline
(Unseret al 1993, Gúedon and Bizais 1991)) forpg. For instance,b0(r, θ) = h(r) ∗ pg

0(r, θ),
wherepg

0(r, θ) is the Radon transform of the 2D spline kernel of degree 0, is called the Haar
filter (Guédon and Bizais 1994). In this paper, the space correspondence theoremdetermines
the spline kernelg to be used. Since the projections are modelled inH(m), g must be a spline
kernel belonging toH(m− 1

2 ) (a spline function of degree 2m − 2) so that the reconstructed
distribution lies inH(m− 1

2 ).
To use SFBP on discrete projectionspwhich are the discretization of projectionsp ∈ H(m),

we process each slice independently by:

• Oversampling the projectionspik by a factor1 = 4 using interpolating splines of degree
2m− 1.
• Computing the discrete versionpgik of pg, using 2m − 2 successive convolutions of the

discrete version of the Haar filter by the discrete version ofpg
0, whose expressions can be

found in Gúedon and Bizais (1994).
• Convolving the oversampledpik by pgik in thek direction.
• Backprojecting the convolved projections using conventional algorithms (e.g. from

Huesmanet al (1977)). This yields a discrete activity distribution in its original sampling
fll′ . From equation (C.1),fll′ is the discrete version of an activity distributionf belonging
toH(m− 1

2 ).
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