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Abstract. We present a method to validate MRI/SPECT registration
methods based on a set of computer-generated SPECT data. The data
set was produced through Monte Carlo simulations from an attenuation
map and an activity map derived from a manually labeled T1-weighted
MRI data set.
Our approach intrinsically provides a gold standard to assess MRI/SPECT
registration methods. It was successfully applied to the comparison of
four registration methods based on similarity measurements: Mutual In-
formation, Normalised Mutual Information, Correlation Ratio andWoods
Criterion.

1 Introduction

Multimodal data fusion has a strong potential to improve diagnosis and treat-
ment preparation in many fields making intensive use of medical images. The
accuracy of registration between imaging modalities is central in the technique.
That is why the selection of appropriate registration methods should take each
clinical context into account (e.g. ictal epileptic state) in order to thoroughly
investigate whether the basic assumptions underlying each method (e.g. nature
of similarities) are met.

Registration methods have been widely compared and validated for CT, MRI
and PET data, particularly in the Retrospective Registration Evaluation Project
(RREP) led by Vanderbilt University [1]. However, only few references are specif-
ically geared toward validating SPECT/MRI registration methods [2][3]. In most
cases the methods validated for PET/MRI registration are simply applied to reg-
ister SPECT data [1][4][5].

But in order to validate a method, the precision and accuracy of a regis-
tration technique should be assessed by means of a gold standard. The latter
provides a reference geometric transformation with which registration methods
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can be assessed. Classically, gold standards are provided by fiducial markers [2],
stereotactic frames [1][4][5][6] or mean geometric transformation computed from
several registration results [3]. But this type of evaluation is limited by the intrin-
sic accuracy and precision of the registration method used to compute the gold
standard. Indeed, the method to be validated cannot yield better performances
than the gold standard registration method itself. We suggest that a “perfect”
gold standard can be found by using simulated data to validate methods. The
main drawback of simulated data is that they are generally too far from clinical
reality, possibly causing validation results to be biased by too auspicious test
conditions.

We present a validation method based on realistic SPECT simulations to
study and compare SPECT/MRI registration methods. We used Monte Carlo
simulations to create normal SPECT from an MRI data set. Simulated data were
then used to study four MRI/SPECT registration methods based on similarity
measurements: Mutual Information (MI)[7][8], Normalised Mutual Information
(NMI)[6], Correlation Ratio (CR)[9] and Woods Criterion (WC)[4].

2 Material and Methods

2.1 SPECT Model Construction

Our method is based on the simulation of realistic SPECT data sets from a 3D
T1-weighted MRI data set. By constructing simulated SPECT data from an MRI
data set, we can be certain that both data sets are perfectly aligned. As a result,
our method provides a gold standard for validation. We constructed realistic
SPECT data sets by simulating physical processes including both single photon
propagation (e.g. Compton scatter, tissue attenuation) and acquisition proce-
dures (e.g. collimator and detector response), using Monte Carlo techniques. Our
simulations were performed with the Photon History Generator (PHG) software
package created by the Simset team (Simulation System for Emission Tomogra-
phy1) from Washington University [10]. Actually, PHG simulates SPECT data
from a theoretical model of brain perfusion. A brain tissue attenuation map and
a radioactive tracer activity map are used to build the perfusion model from a
high resolution MRI data set.

Spatial Model of Radiotracer Distribution Our spatial distribution model
was based on Zubal’s head phantom, which consists of sixty three anatomical
entities manually segmented and labeled on a normal T1-weighted MRI data set
[11]. These entities were classified into seven different classes (conjunctive tissue,
water, brain, bone, muscle, fat and blood), from which the attenuation map was
derived.

1 http://depts.washington.edu/∼simset/html/simset main.html
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Brain Perfusion Model Using labeled entities of Zubal’s phantom, we, along
with clinicians, selected eight anatomical structures likely to fix the radioactive
tracer (HMPAO-99mTc) differently: external cortex, occipital lobes, pons, white
matter, cerebellum, insula, gray nuclei and caudate nuclei. For each anatomical
structure, we extracted eight binary masks from the labeled MRI. Our mea-
surements of normal brain perfusion were performed on the SPECT template
provided by the Statistical Parametric Mapping (SPM) software package2. This
template was generated by Barnden [12] by averaging 22 normal SPECT data
sets after spatial normalization. Perfusion measurements were performed on the
SPECT template using the eight anatomical entity masks. For this purpose, we
spatially normalized Zubal’s MRI on the SPM T1 template using SPM [13]. Since
the SPM SPECT template is perfectly aligned with the SPM T1 template, the
non-linear geometric transformation computed after spatial normalization was
applied to our eight binary masks. In order to deal with partial volume effects
in SPECT due to different spatial resolutions between SPECT and MRI, we
smoothed our binary masks with a Gaussian kernel (full width at half maximum
of 15 mm). For each anatomical entity, perfusion measurements consisted in av-
eraging the SPECT template intensities weighted by the smoothed masks. Note
that in the white matter, regions of interest were delineated manually before
SPECT template measurement, as the smoothed white matter mask included
too much gray matter. As a result we generated an activity map mimicking
normal brain perfusion.

Normal SPECT Simulation The attenuation and activity maps described
above were used by PHG to simulate SPECT data. We chose to simulate photon
emission of Technetium 99mTc. 109 photons were simulated. A SPECT acquisi-
tion with a parallel hole collimator was simulated (64 projections 128 x 128 over
360◦, pixel size = 2.2 mm). Tomographic reconstruction used Filtered BackPro-
jection with a ramp filter and the reconstructed data were postfiltered using a
3D Gaussian filter with full width at half maximum of 8.8 mm. This provided
us with a realistic, normal SPECT that was perfectly aligned (on account of its
very construction) with a high resolution T1-weighted MRI.

2.2 Application: MRI/SPECT Registration Validation

In this section, we present an application of our simulation environment to vali-
date MRI/SPECT registration methods in the case of non-pathological SPECT
and MRI data sets. We decided to study and compare four registration methods
based on statistical similarity measurements that are widely used in the context
of automatic multimodality registration.

Registration Methods Based on Statistical Similarity Measurements
SPECT/MRI registration is rigid intra-patient registration. The purpose is to

2 http://www.fil.ion.ucl.ac.uk/spm/
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assess a rigid geometric T transformation defined by six parameters (three trans-
lations and three rotations). Let the reference image R be our SPECT data set
and the floating image F our MRI data set. Similarity measurement-based reg-
istration relies on the fact that a similarity measurement S(R, T (F )) is optimal
when the data sets are perfectly registered. We studied four similarity measure-
ments: Mutual Information, Normalised Mutual Information, Correlation Ratio
and Woods Criterion.

– Mutual Information (MI) [7][8]:

S(A, B) = H(A)− H(A|B) = H(A) + H(B)− H(A, B) (1)

where H denotes Shannon entropy.
Mutual Information is a measure of statistical dependence between two ran-
dom variables, in our case the two images, relying on entropy measurements.
Mutual Information makes no assumptions regarding the nature of this de-
pendence.

– Normalised Mutual Information (NMI) [6]:

S(A, B) =
H(A) + H(B)

H(A, B)
(2)

Normalised Mutual Information is also an entropy-based measure but invari-
ant to the overlap region of both data sets.

– Correlation Ratio (CR) [9]:

S(A|B) =
V ar[E(A|B)]

V ar(A)
(3)

Correlation Ratio measures the functional dependence between A and B, i.e.
it measures how B explains the “energy” of A.

– Woods Criterion (WC) [4]:

S(A|B) = EB

(√
V ar(A|B)
E(A|B)

)
(4)

Woods Criterion is based on the heuristic that certain structures or organs
have a similar uniformity of intensities in both modalities. For each MRI
intensity value, this criterion measures the ratio between standard deviation
and mean of corresponding SPECT intensity values. As recommended by
the author, we segmented brain from the MRI data set before registration.

Given a geometric T transformation, each of these similarity measurements
may be computed on the joint histogram of R and T (F ). Partial volume in-
terpolation was used to assess joint histograms. To avoid interpolation artifacts
that occur when voxel dimensions of both data are multiples [14], we resampled
our simulated SPECT data. MRI voxel dimensions being 1.1 mm, we changed
SPECT voxel dimensions from 2.2 mm to 4.51 mm, which exactly corresponds
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to the sampling rate used for our clinical acquisitions. The optimization of these
cost functions was then achieved using Powell’s multidimensional direction set
method and Brent’s one-dimensional optimization algorithm for line minimiza-
tions [15]. A two-level multiresolution strategy as described by [8] was applied
to avoid the pitfall of local optima.

Registration Validation N = 50 T ∗ theoretical transformations were gener-
ated by randomly sampling a 6 parameter vector using a Gaussian distribution
(Mean = 0, Standard Deviation = 10). T ∗ was then applied to the MRI data
set and a new unregistered MRI was thus created using trilinear interpolation
during resampling. We then sequentially launched registration with the simu-
lated SPECT using the four registration methods described above. We called
the computed geometric transformation T̂ .

– Precision : For each registration method, precision was assessed by the dis-
tribution of |T ∗ − T̂ | values.

– Accuracy : For each registration method, accuracy was assessed by comput-
ing mean, standard deviation and maximum values of a registration error
measured on a set of n Pi points uniformly distributed within the brain and
on the skin (identified using labeled MRI) as follows :

RMS =

√√√√ 1
n

n∑
i=1

∥∥∥Pi − T̂−1(T ∗(Pi))
∥∥∥2

(5)

3 Results

Model Construction and SPECT Simulations Fig. 1 presents our nor-
mal brain perfusion model or activity map. After simulation, 22 million photons
among the 109 that were simulated were accepted by the detector. Volume re-
construction of this simulation is represented in Fig. 2.

Results of Registration Validation Distribution of precision measurements
(|T ∗ − T̂ |) are presented using boxplot representations for MI(Fig. 3), NMI(Fig.
4), CR(Fig. 5) and WC without (Fig. 6) or with (Fig. 7) prior brain segmenta-
tion from MRI. Translation errors (Tx, Ty, Tz) were computed in mm whereas
rotation errors (Rx, Ry, Rz) were computed in degrees. We used the following
reference coordinate system: x axis denotes anterior to posterior axis, y axis
denotes top to bottom axis and z axis denotes left to right axis.

Accuracy measurements (mean, standard deviation and maximum values of
RMS) are presented in Table 1, for n = 1600 points uniformly distributed within
the brain and n = 1400 points uniformly distributed on the skin. RMS values are
given in mm. Distribution of brain and skin RMS values for MI, NMI, CR and
WC (with prior brain segmentation) is displayed using boxplot representations
(Fig. 8). No registration solution was excluded from these results.
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Fig. 1. Normal Brain
Perfusion Model

Fig. 2. Monte Carlo
Simulations of Normal
SPECT

Table 1. Accuracy Measurements

Brain RMS Skin RMS

Mean ± Std Max Mean ± Std Max

MI 7.75±2.86 21.02 8.67±3.27 22.59

NMI 8.13±2.97 21.43 9.21±3.39 23.17

CR 5.60±2.83 16.63 6.36±3.44 18.05

WC (no segmented brain) 19.87±5.26 36.09 27.29±7.03 50.74

WC (segmented brain) 8.14±2.33 16.57 9.07±2.95 19.23

4 Discussion

Thanks to the method we describe in this paper, we produced a realistic model
of SPECT that was perfectly aligned with a T1-weighted MRI data set. The
very concept of our approach provides a gold standard to validate MRI/SPECT
registration methods. Simulated SPECT data sets were considered realistic be-
cause physical processes involved in SPECT acquisition were all closely modeled
through PHG. Although our theoretical brain perfusion model does not take
detailed physiological knowledge into account, we consider that our simulation
results are adequate for registration validation purposes. What we present is a
new way to evaluate and compare registration methods using realistic simulated
data sets by controlling acquisition procedures (Monte Carlo simulations) and
functional information (perfusion model).

Registration precision and accuracy proved very satisfactory for practically
every method. Mean registration errors were lower than SPECT data resolution
(resolution measurement: 12.4 mm). Some of the less satisfactory results were
found when assessing WC with unsegmented brain. This is not surprising since
in this case uniformity assumptions made by the Woods Criterion are less valid.
No significant differences were found between MI, NMI and WC (with segmented
brain). Nevertheless, WC using segmented brain is less automated method, re-
gardless of clinical use. The best results were obtained for CR. We are aware
that our simulation approach may implicitly introduce statistical or functional
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Fig. 3. MI Precision
measurements (|T ∗− T̂ |)
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Fig. 4. NMI Precision
measurements (|T ∗− T̂ |)
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Fig. 5. CR Precision
measurements (|T ∗− T̂ |)
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Fig. 6. WC Precision
measurements (|T ∗− T̂ |)
(no segmented brain)
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Fig. 7. WC Precision
measurements (|T ∗− T̂ |)
(segmented brain)

Fig. 8. Brain and skin
accuracy measurements
(RMS)

dependence between both data sets. Consequently, results may be better in our
study than in real conditions. We plan to study the assumption when creating a
pathological perfusion model. Still, our results are qualitatively concordant with
literature [2], even though comparing different validation methods is not an easy
thing.

We emphasize the generic aspect of our approach. Actually, this study may
easily be extended to other registration methods or investigate other aspects
such as sensitivity to SPECT reconstruction and correction features (e.g. re-
construction filters, attenuation or scatter correction). Our method may also be
applied to study other clinical contexts, in particular by simulating patholog-
ical SPECT patterns. Our perfusion model could be improved, however, if it
were based on the statistical analysis of a population of subjects (healthy or
pathological) rather than on measurements from an averaged SPECT data set.
For instance, we plan to study the behavior of the same similarity-based meth-
ods in the case of ictal SPECT in epileptic patients because of possibly large
dissimilarities between ictal SPECT and MRI data.
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